Riluzole-sensitive slowly inactivating sodium current in rat suprachiasmatic nucleus neurons.

نویسندگان

  • Nikolai I Kononenko
  • Li-Rong Shao
  • F Edward Dudek
چکیده

The persistent (i.e., slowly inactivating) fraction of the Na current (I(Na,P)) regulates excitability of CNS neurons. In isolated rat suprachiasmatic nucleus (SCN) neurons with a ramp-type voltage-clamp protocol, we have studied the properties of a robust current that has the general properties of I(Na,P) but exhibits a slow inactivation (I(Na,S)). The time dependence of the development of the inactivation was also studied by clamping of the membrane potential at different levels: time constants ranging from approximately 50 to approximately 700 ms, depending on the voltage level, were revealed. The I(Na,S) (50-150 pA) was present in both spontaneously active and silent neurons. The neurons exhibited I(Na,S) without visible rundown during approximately 1-h recordings. I(Na,S) had a threshold between -65 and -60 mV and was maximal at about -45 mV. Tetrodotoxin (TTX; 1 microM) completely and reversibly blocked I(Na,S). Riluzole, an effective blocker of I(Na,P), inhibited reversibly I(Na,S) with an EC(50) of 1-2 microM. Microapplication of 10 microM riluzole during either extracellular or intracellular recording suppressed spontaneous activity in isolated SCN neurons. In the slice preparation, bath application of 20 microM riluzole resulted in decreased firing rate or complete suppression of spontaneous activity in some neurons (9/14) but had no effect on other neurons (5/14). In riluzole-resistant neurons in cell-attached experiments, low-amplitude current spikes were present in 1 microM TTX. We concluded that I(Na,S) is ubiquitously expressed by all SCN neurons and that this current is a necessary but not sufficient depolarizing component of the mechanism for spontaneous firing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current.

Neurons constituting the pacemaker of circadian rhythms, located in the suprachiasmatic nucleus, generate spontaneous firing patterns that change across the day-night cycle. Their average spontaneous firing rate is considered an important functional marker of clock activity because it is highest during daytime and low at night. In this study we investigate the ionic mechanisms underlying sponta...

متن کامل

Blockade of Persistent Sodium Currents Contributes to the Riluzole-Induced Inhibition of Spontaneous Activity and Oscillations in Injured DRG Neurons

In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impuls...

متن کامل

Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons.

The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability....

متن کامل

Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration.

The ionic mechanisms by which dopamine (DA) regulates the excitability of layers V-VI prefrontal cortex (PFC) output neurons (including those that project to the nucleus accumbens) were investigated in rat brain slices using in vitro intracellular recording techniques. DA or the D1 receptor agonist SKF38393, but not the D2 agonist quinpirole, reduced the first spike latency and lowered the firi...

متن کامل

Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons.

We studied acutely dissociated neurons from the dorsomedial (shell) region of the rat suprachiasmatic nucleus (SCN) with the aim of determining the ionic conductances that underlie spontaneous firing. Most isolated neurons were spontaneously active, firing rhythmically at an average frequency of 8 +/- 4 Hz. After application of TTX, oscillatory activity generally continued, but more slowly and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2004